NUMERICAL RADIUS NORMS ON OPERATOR SPACES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Radius Norms on Operator Spaces

Abstract. We introduce a numerical radius operator space (X,Wn). The conditions to be a numerical radius operator space are weaker than the Ruan’s axiom for an operator space (X,On). Let w(·) be the numerical radius norm on B(H). It is shown that if X admits a norm Wn(·) on the matrix space Mn(X) which satisfies the conditions, then there is a complete isometry, in the sense of the norms Wn(·) ...

متن کامل

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

Quantum nonlocality, tensor norms and operator spaces

A comment on these notes 3 Capítulo 1. Introduction to Quantum nonlocality 5 1. Bell's result: Correlations in EPR 5 2. Tsirelson's theorem and Grothendieck's theorem 7 3. Banach space point of view 15 4. Computer science point of view: XOR games 21 Capítulo 2. Quantum nonlocality: The general case 23 5. Bell functionals and multiplayer games 23 6. Operator spaces 25 7. Description of two-playe...

متن کامل

On the Numerical Radius of a Quaternionic Normal Operator

We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternio...

متن کامل

Approximation properties of certain operator-induced norms on Hilbert spaces

We consider a class of operator-induced norms, acting as finite-dimensional surrogates to the L2 norm, and study their approximation properties over Hilbert subspaces of L2. The class includes, as a special case, the usual empirical norm encountered, for example, in the context of nonparametric regression in a reproducing kernel Hilbert space (RKHS). Our results have implications to the analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2006

ISSN: 0024-6107,1469-7750

DOI: 10.1112/s0024610706022794